Teaching Machine Learning

A. Gilad Kusne, aaron.kusne@nist.gov National Institute of Standards & Technology University of Maryland

ML Education

- NIST: Internships, Fellowships, Postdocs
- Bootcamp + Mini-Bootcamp
- Competition
- UMD Course + LEGOs!
- REMI, https://pages.nist.gov/remi/

Internships / Fellowships

- High School: Summer Internship (SHIP)
- Undergraduate: Summer Fellowship (SURF)
- Graduate: Host and Collaborations
- Postdoc (2 years): NSF NRC Fellowship
 - Primary recruitment tool.

Join Us!

- NRC US Citizens only
 - ML-driven Autonomous Systems for Materials Discovery and Optimization
 - ML for Autonomous Genetic Engineering of Microbial Systems
 - ML for High Throughput Materials Discovery and Optimization Applications
- Non-US Citizens, contact: aaron.kusne@nist.gov

Annual Machine Learning for Materials Research Boot Camp and

Workshop Date: Aug 8-12

Location: Hybrid, UMD College Park

Introduce researchers from industry, national labs, and academia to ML theory and tools for rapid data analysis.

- 4 days of lectures and **hands-on** exercises (e.g. noise reduction, unsupervised and supervised techniques, computer vision, etc.) includes ML for robot science!
- Focus on handling real data, both experimental and computational.
- Open-source, Python-based modules
- Symposium on Friday

https://www.nanocenter.umd.edu/events/mlmr/

Contact: aaron.kusne@nist.gov

Annual Machine Learning for Materials Research Boot Camp and Workshop UMD and NIST

https://www.nanocenter.umd.edu/events/mlmr/

National Institute of Standards and Technology U.S. Department of Commerce *for* MATERIALS RESEARCH mlmr@umd.edu

BOOTCAMP & WORKSHOP

Organizers, Funding, Support

A. Gilad Kusne

National Institute of Standards & Technology Materials Measurement Science Division

Daniel Samarov National Institute of Standards and Technology Information Technology Laboratory

Ichiro Takeuchi

University of Maryland, College Park Department of Materials Science & Engineering

Alexei Belianinov

Oak Ridge National Laboratory Center for Nanophase Materials Sciences

Jim Warren

UNIVERSITY OF MARYLAND

For facilities

Hands On

- Only open-source code (e.g. scikit learn)
 - No licensing issues
 - Free for budget-wary attendees
 - Minimum Programming
 - Matlab -> Anaconda -> Colab
- Colab Online Platform
 - Saves from hours of installation
- Integration in Lectures
 - Alternate vs Split
- Attendees invited to share data to become exercises.

Hands On

- Diverse Data Types
 - Scalar, Spectra, Images, Hyperspectral Images, Graphs
 - Simulation & Experiment

Log intensity (art)

Topics Covered

- Intro to Python
- <u>Data Pre-processing</u>
- Unsupervised Learning
- Supervised Learning
- Active Learning
- Recent pub work (hands on)
- Workshop

1/2 day 1/2 day 1 day 1 day 1/2 day 1/2 day 1 day

Day 1: Intro to Python and Data Preprocessing

mlmr@umd.edu

Feature Detection

Day 2: Unsupervised Learning

ples

Day 3: Supervised Learning

 From basic linear regression to the most advanced methods.

Day 4a: GPs, Active Learning, Autonomous

Day 4b: Walkthrough of Recent Innovations

- Walkthrough by authors of recent high impact papers.
- Open data, open code.
- How to access and work with large DBs.
- Step-by-step in colab.
- Thought processes.

Focus

- Existing tools and their use
- Minimum Code for Maximum Productivity
- Best Practices
 - Many ML techniques exist, when/how to use them
 - Full ML Pipeline
- Small data / Big data
- Uncertainty Quantification & Propagation

Poster Sessions

- Bring in poster on your data challenges.
- Brainstorm solutions with MLMR faculty & students over tacos.

Hackathon

- For those that want to work through the evening.
- Day 1: Announce challenge
- Day 4: Walkthrough of solutions.

Past Attendees: 24 Countries

Past attendees from around the world!

Mini Bootcamps

- Format: 1.5 hours 2 days
- Hands-on
- MRS, TMS, APS, NSF Workshops, MLSE, Etc.

Competition – Big awards: Future on REMI

Matter of Opinion

Teaching machine learning to materials scientists: Lessons from hosting tutorials and competitions

Shijing Sun¹, Keith Brown², A. Gilad Kusne^{3, 4} A ≅

Show more V

+ Add to Mendeley 😪 Share 🌖 Cite

https://doi.org/10.1016/j.matt.2022.04.019

Get rights and content

The growing field of data-driven materials research poses a challenge to educators: teaching machine learning to materials scientists. We share our recent experiences and lessons learnt from organizing educational sessions at the fall 2021 meeting of the Materials Research Society.

• Next Competition: August

UMD Course: ML for Physical Scientists

- From intro to Python through ML for autonomous physical science.
- Playing with LEGOs! low-cost LEGO platform for class projects

Why?

- * Teach Full Data Science Pipeline
- * Students learn Consequences of Decisions!
- * Teach controls level of complexity

Household items: Vinegar + Milk of Magnesium

A Low-Cost Education Platform for Teaching Autonomous Physical Science

Logan Saar

B.S., Materials Science and Engineering, UMD (Isaar@umd.edu)

Gilad Kusne, Austin McDannald, Ichiro Takeuchi

University of Maryland & NIST

The Challenge of Materials Exploration

Complex materials described by High dimensional space!

Exhaustive Search:

Assume: For each parameter, 10 experiments over range.

10² experiments

4 Parameters -> 10⁴ experiments

For N parameters -> 10^(N) experiments!

Complex materials and complex materials physics are out of reach!

Automated

Robot executes tasks

Image Credit: https://blog.robotiq.com/a-brief-history-of-robots-in-manufacturing

Autonomous

Robot **learns** & .. Reacts to gathered data

ACTIVE LEARNING

Image C

A mobile robotic chemist Burger et al., Nature 583, 237 (2020)

Beyond Ternary OPV: High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems

- Blending/mixing or polymers/organic molecules
- Number of experiments can be significantly reduced

Burger, B., Maffettone, P.M., Gusev, V.V. et al. A mobile robotic chemist. *Nature* 583, 237–241 (**2020**)

CAMEO: Closed-Loop Autonomous Materials Exploration and Optimization

Discovered: New best-in-class phase change memory material

ScientificAI: built in phase map and XRD physics

10x acceleration over off-the-shelf methods

Run at: SLAC

Kusne, et al. Nature Communications 11.1 (2020)

Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot

Robert W. Epps, Michael S. Bowen, Amanda A. Volk, Kameel Abdel-Latif, Suyong Han, Kristofer G. Reyes, Aram Amassian, and Milad Abolhasani*

Adv. Mater. 2020, 32, 2001626

Other Works:

Stach, (**2021**). Autonomous experimentation systems for materials development: A community perspective. *Matter*, 4(9), 2702-2726.

Low Cost Autonomous Physical Science System

Raspberry

EV3

 \gg

Composition Space

(measured)

Weak Acid - Acetic Acid - 1 M Conjugate Base - Sodium Acetate Solution - 1 M

<u>Goal</u>

Recover Henderson-Hasselbalch Equation from data.

$$pH = pK_a + log_{10} \left(\begin{array}{c} [Base] \\ \hline [Acid] \end{array} \right) \xrightarrow{\text{Our known}} \\ parameters \\ (for synthesis) \end{array}$$
Response Variable Dissociation

Constant (unknown

to robot)

Active Learning Closed Loop System – Rasp. Pi

Educational Application (Fall 2021 ENMA 437/637)

UMD Machine Learning for Materials Science Course

Concepts and Challenges

- Acquisition Functions (Exploration/Exploitation)
- Gaussian Processes
- Hardware/Robotics
- Limitations (discretization of compositions, hardware, etc.)

Exploration & Exploitation

Can the Robot Explore the Relationship between Composition & Properties?

Can it use that understanding to prepare a sample with a particular properties?

Exploration Initiative - (Gaussian Process)

3 data points

5 data points

GP flexibility - (Gaussian Process)

个个% error in HH simplification ...

HH equation relies on assumptions

- → No self-ionization of water
- → Valid only in certain composition range
- → pKa~4.7

Parameter Determination

If we start with a hypothetical model, can the robot determine the best parameters?

Brief Overview - Bayesian Inference

Probabilistic interpretation ... quantifying **uncertainty** (how confident are we?)

Prior: Assume model has logarithmic form (pH = A + B*log(x))

→ A and B are our model parameters

Posterior: Probability of this model and its model parameters given the data

Autonomous Results - (Bayesian Inference)

- \rightarrow Solve for Posterior using MCMC
- \rightarrow Confidence interval based on MCMC sampling

→ Can use parameter uncertainty to decide which composition to measure next

ANDiE: the Autonomous Neutron Diffraction Explorer. McDannald, et. al, 2021

Model Determination

Can the Robot Determine the Physical Law by Itself?

- 1. Fit multiple functional forms to the data ("Candidates")
- (sinusoidal, power function, logarithmic, exponential, quadratic, etc.)
- Non-linear least squares regression

x = [Acid]/[Base]

What is the correct form?

pH = A + B * log [C * (x-D)] ? pH = A + B * sin [C * (x-D)] ? pH = A + B * exp[C * (x-D)] ?

Alter parameters to get best fit

- 2. Create PDF for each candidate at every composition
 - (std. of PDF given by std. of residuals)
 - Better models have narrow distributions, Worse are broad

3. Rank the total likelihood that each candidate model produced the data

Performance Metric for each candidate is the total likelihood [sum of log(likelihood)] along every collected data point Candidates with least certainty will have lower total

likelihood

 \rightarrow Power function emerges as best model

→ BIC considers # of model parameters (n)
 → Min(BIC), log function is best model

4. Create a cumulative distribution of all PDFs at each composition

Log Exp

— Linear

— Quad

— Cubic

— Sin

— Pow

В

6.0

6. Determine which composition to measure next

- Look where candidate differ the most
- Better candidates weighted more

After 5 measurements:

Top Ranked Model pH = 4.753 + 1.02 * **log** [A/B]

Model Generation (Symbolic Regression)

Can the Robot also self-generate explanatory models?

Symbolic Regression Overview

- Genetic programming
- "mates" best functions during fitting
- "mutations" possible as well
- Generates potential explanatory functions

Application to Autonomous Physical Science

Set of "candidates" generated after each data point measurement

Penalize complexity

- → Occam's Razor
- \rightarrow Prevent overfitting

Best candidates lie along Pareto Front (Error vs. Complexity)

Can choose Acquisition Function

Eureqa Free Trial

Results

)	Complexity	MSE	Score	Equation
	1	0.518	0.000	5.076
	4	0.361	0.121	$4.253 + \cos(r)$
	5	0.106	1.222	6.001-1.833r
	6	0.007	2.772	4.483-0.984*log(r)
	11	0.004	0.093	$2.886 + \cos(r) + \exp[\exp[-$
				6.387*sin(r)]]

Figure 5. Symbolic regression combined with active learning for probabilistic model determination. a) example data, b) output from symbolic regression with 5 models. The model with the highest score matches the HH equation with a slight deviation of parameters.

Generated candidate of same functional form as HH equation with one input variable

 \rightarrow Logarithmic candidate had the highest score

b

→ Candidate with lowest error penalized due to complexity (4 internal functions)

Publications

DOI: 10.48550/arXiv.2204.04187 · Corpus ID: 248069191

A Low-Cost Robot Science Kit for Education with Symbolic Regression for Hypothesis Discovery and Validation

Logan Saar, Haotong Liang, +4 authors A. Kusne • Published 8 April 2022 • Education • ArXiv

The next generation of physical science involves robot scientists – autonomous physical science systems capable of experimental design, execution, and analysis in a closed loop. Such systems have shown real-world success for scientific exploration and discovery, including the first discovery of a best-in-class material. To build and use these systems, the next generation workforce requires expertise in diverse areas including ML, control systems, measurement science, materials synthesis... Expand

→ MRS Bulletin August Edition → Available now on Arxiv

REMI: REsource for Materials Informatics

- Code in many different platforms, languages, etc.
- Centralize in a curated, searchable list.
- REMI is open source.
- Please Submit!!

pages.nist.gov/remi

Explore Instructional Resources

Show 10 $$					Search:
Resource Name	Туре 🍦	Collection	Data Science Tags	¢	Material Science Tags
how to extract or plot the NiO band structure from a VASP calculation using pymagen	Example	matgenb	Platform:MaterialsProject		Element:Ni Element:O Computation:DFT Property:BandStructure Property:DensityOfStates
Adsorption on solid surfaces	Example	matgenb	Platform:MaterialsProject		Computation:DFT Property:Adsorption
Advanced PIF Tutorial	Example	Citrine	FileFormat:PIF Platform:Citrination		
Advanced Queries	Example	Citrine	FileFormat:PIF Platform:Citrination		Material Class: Oxides
Advanced Queries	Example	Citrine			
Advanced Visualization using FigRecipes	Tutorial	Matminer			Material Class: Thermoelectric
AFLOW machine learning	Example	AFLOW	Platform:AFLOW Regression:GradientBoosting Regression:PropertyLabeledMaterialsFragments Preprocessing:PropertyLabeledMaterialsFragments		Property:Electronic Property:ThermoMechanical
AFLOW.org	Example	AFLOW	Platform:AFLOW		

Questions