Data Analysis and Machine Learning Education in the Physics Department at the University of Illinois

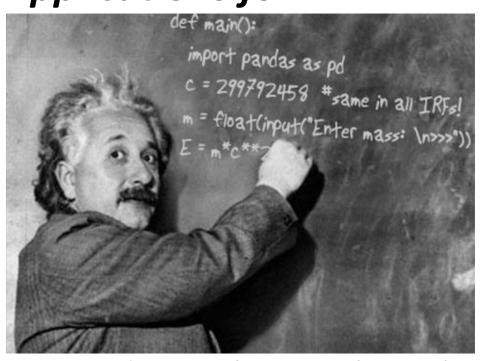
Mark Neubauer
University of Illinois at Urbana-Champaign

Origins of my DS/ML course in Physics

The idea for developing a course in data analysis and ML applications for our undergraduates grew out of townhall discussions ~6 years ago in our department

- At the time, there were no such courses in our Physics department (now there are several)
- Data science was on the rise, especially driven by the revolution around machine learning
- Students recognize the high value of training at the intersection of data science, Al and physics

I pitched this new course in 2017 at our PAB meeting & taught in Fall 2018, Spring 2019, Fall 2019, Spring 2022


Data Analysis & ML Applications for

Topica Physicists

- Techniques for analysis and interpretation of scientific data
- Machine learning principles and applications to physics

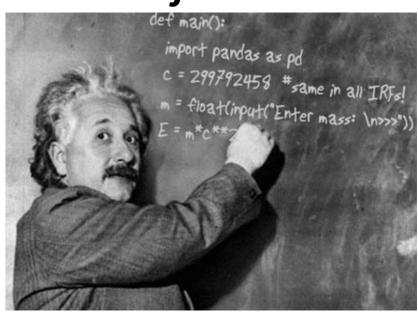
Technical approach:

- Open everything
- Minimize coding focus: Data Science to advance Physics is the goal

Data Analysis & ML Applications for

Physicists

Motivation


- We live in a data-centric world, with people and machines learning from vast amounts of data.
- Early-career physicists need a solid understanding in the basics of data analysis, data-driven inference and machine learning, and a working knowledge of modern tools and techniques from data science

Data Analysis & ML Applications for

Why de hyis iici Physics?

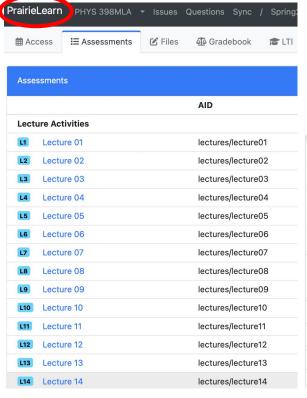
- Data science is an exploding area both academia and industry
 - E.g. we find that many problems in physics map to vision problems amenable to automation via ML methods
- Many of the future (and current) jobs
- will be in this area
 Physics students need a solid foundation in data analysis & interpretation
 to do research. They need this education and training to be productive in science and thrive as the next generation of leaders

Data Analysis & ML Applications for Physicists

Structure

- Two credit-hour course
- One 2 hour lecture each week
 - Attendance and class participation are mandatory
- ❖ 8 Homework assignments
 - New problems posted ~weekly, due within 1 week
- ❖ A final project based on analysis of open science data

Data Analysis & ML Applications for Physicists


Pedagogy in Motion

- ❖ At the center of the course is *scientific data*
 - Students learn how to analyze it, simulate it, gain insight from it, and get machines to learn from it
- Students acquire a working knowledge of DS tools
 - All lecture materials, homework and projects are python-based within in Jupyter notebooks (.ipynb)
 - Materials are managed within a Github organization
 - Students submit homework (.ipynb) to their private Github repo. Homework is managed by nbgrader
 - In-class time is a mixture of collective listening and active learning with in-situ coding exercises

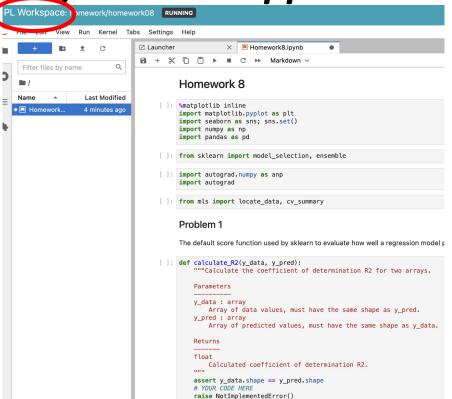
PrairieLearn is an online problem-driven learning system for creating homeworks and tests

Developed by the University of Illinois in 2014

Course Projects		
P1	Final Project	projects/FinalProject
Homeworks		
HW1	Homework 01	homework/homework01
HW2	Homework 02	homework/homework02
нwз	Homework 03	homework/homework03
HW4	Homework 04	homework/homework04
HW5	Homework 05	homework/homework05
HW6	Homework 06	homework/homework06
HW7	Homework 07	homework/homework07
HW8	Homework 08	homework/homework08

Course website: http://illinois-mla.github.io/syllabus

PHY 398MLA

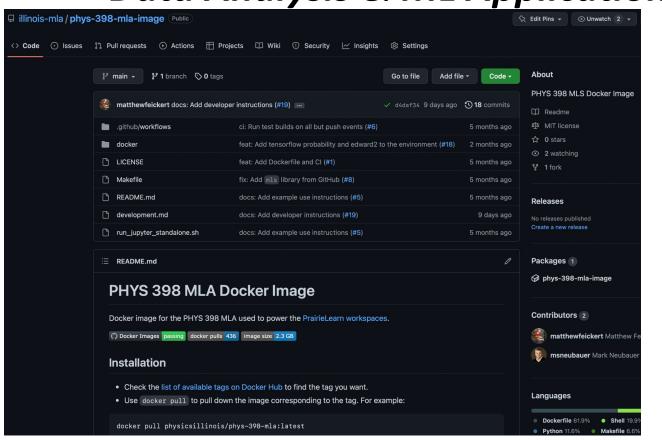

Data Analysis & ML Applications for Physicists

PrairieLearn Workspaces

allow students to work in persistent remote containers via in-browser frontends such as VS Code and JupyterLab.

Workspace questions are integrated with the standard PrairieLearn autograding pipeline.

The remote containers are configured by instructors to provide <u>custom</u>, <u>uniform</u> environments per question.

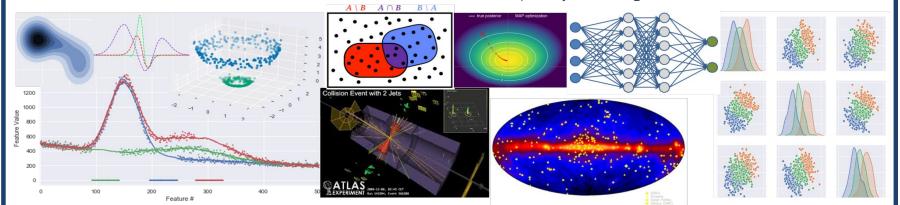


Course website: http://illinois-mla.github.io/syllabus

Docker container:

https://github.com/illinois-mla/phys-398-mla-image

Data Analysis & ML Applications for Physicists



Data Analysis & ML Applications for Physicists

- 1) Handling and Visualizing Data
- 2) Finding structure in data
- 3) Measuring and reducing dimensionality
- 4) Adapting linear methods to nonlinear problems
- 5) Estimating probability density
- 6) **Probability theory**
- 7) Statistical methods
- 8) Bayesian statistics
- 9) Markov-chain Monte Carlo in practice
- 10) Stochastic processes and Markov-chain theory

- 11) Variational inference
 - 12) Optimization
 - 13) Computational graphs
 - 14) Probabilistic programming
 - 15) Bayesian model selection
 - 16) Learning in a probabilistic context
 - 17) Supervised learning in Scikit-Learn
 - 18) Cross validation
- 19) Neural networks
- 20) Deep learning

Data Analysis & ML Applications for Physicists

Some challenges:

- Coding is new for many students. Many are unfamiliar with Python, Git, Jupyter notebooks, etc ... \rightarrow provide ample resources/examples
- Challenge to keep notebooks working over years (e.g. TF API changes, ...) and the software packages/tools current
- Modules for physics applications (thanks to DSECOP Fellows!)
- Access to GPU resources for training deep neural network models

Work in progress:

 Developing an advanced version for MEng in Instrumental Physics @ Illinois

https://a3d3.ai

