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Goals

• Relevant course: Quantum Mechanics 1 (Usually Junior year) 
(after students learn about Quantum Harmonic Oscillator) 

• Physics goals:  
• Introduction to Time-Dependent Schrödinger Equation 
• Converting analytical solutions to code 

• Machine learning goals:  
• Introduction to neural networks 
• Integrating physics domain knowledge into ML algorithms
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Structure

• Lesson 1: Introduction to Neural Networks 
• Lesson 2: Brief background on machine learning and applications to physics 
• Lesson 3: Solving the Time-Dependent Schrödinger Equation for a Quantum 

Harmonic Oscillator, using machine learning 

• Components:  
• In-built interactive demonstrations and exercises 
• Take-home reading and reference 
• Project ideas (trivial to ambitious)
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Lesson 1
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Introduction to Neural Networks 
(with plumbing and colours)

CMYKRGB
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Lesson 2

Broad introduction to machine learning

• Background for machine learning 

• Brief explanation of: 

• Parts of ML workflow 

• Different ML models 

• Deep learning 

• Applications to physics, and material to explore further (~70 references)
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Lesson 3

A PINN is constructed for the solution of the Time-Dependent 
Schrödinger Equation 

  

in the domain . 

The Hamiltonian is  given by 

  

The analytical solution  is  

  

where  is the wavefunction for a QHO consisting of the 
superposition of eigenstates  and  with  being the energy level of 
state . 

The inputs of the PINN solver are ,  and , with the outputs being 
, where  and  for a QHO with frequency .
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GIF of time evolving density

Physics-Informed Neural Networks for a time evolving quantum QHO
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Lesson 3
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 snapshot for true and predicted values for with  = 1.0.  
 = 1.60e-5,  = 1.37e-5

x − t ψ0,1 ω
MSEu MSEv

Probability Density  at various time steps for with  = 1.0.  
Bold colours denote ground truth, dotted black line denotes corresponding 

predicted density.
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Lesson 3
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 snapshot for true and predicted values for with  = 1.0.  
 = 1.60e-3,  = 1.37e-3

x − t ψ0,1 ω
MAEu MAEv

 snapshot for true and predicted values for with  = 1.0.  
 = 0.27,  = 0.49

x − t ψ0,1 ω
MAEu MAEv
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Lesson 3

For a system , with solution , governed by the 
following equation 

 

where  is a differential operator parameterised by , 
,  

with boundary conditions  

  

and initial conditions 

f u(x, t)

f(u):=
∂u
∂t

+ 𝒩[u; λ], x ∈ Ω, t ∈ [T0, Tτ]

f(u) = 0

𝒩[u; λ] λ
Ω ∈ ℝ𝔻 x = (x1, x2, . . . , xd)

ℬ(u, x, t) = 0 on ∂Ω

𝒯(u, x, t) = 0 at T0
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Lesson 3

We construct , a surrogate model for the true solution  . 

 

The constraints imposed by the system are encoded in the loss term  for 
neural network optimisation. 

  +  +  

where  denotes the error in the solution within the interior points of the 
system. This error is calculated for  collocation points. 

 

 

 

 and  represent the constraints imposed by the boundary and initial 
conditions, calculated on a set of  boundary points and  initial points 
respectively, with  being the ground truth.
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FCN: MAE (density): 3.8673 PINN: MAE (density): 0.0010
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Lesson 3

• Advantages of PINNs: 
• Mesh free nature: Generate solutions for grids of arbitrary resolution 
• Hybrid workflow: Generate extremely fast coarse solutions, further polished by iterative 

numerical schemes 
• Automatic Differentiation: Well suited for integration into ML workflows 
• Generalisable across PDE parameters. Train once, solve a large class of PDEs 

Disadvantages of PINNs: 
• For low dimensional problems, numerical approaches are faster with theoretical 

guarantees 
• Lack of interpretability / Black box algorithm 
• Learning high-resolution higher-dimensional system is resource intensive. However, 

once learnt, inference is very quick on that domain
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Lesson Plan

• Take home - RobotPlumber exercise (2 hours) 
• In class - General discussion of machine learning, applications in physics  

(1-2 hours) 
• In class - TD Schrodinger Equation and PINN theoretical background  

(1-2 hours) 
• Take home - Go through notebook  

(2 hours) 
• Project  

(2 - 8 hours depending on the scope)
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Conclusion

The module is available under the DSECOP GitHub repository 
Link:  
https://github.com/GDS-Education-Community-of-Practice/
DSECOP/tree/main/Learning_the_Schrodinger_Equation

• Module can be used for a Quantum Mechanics course 
• Based on feedback, easy to add other potentials like infinite square well 
• First two lessons can be used for general ML information, third application module can 

be adapted to any course with a differential equation
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https://github.com/GDS-Education-Community-of-Practice/DSECOP/tree/main/Learning_the_Schrodinger_Equation
https://github.com/GDS-Education-Community-of-Practice/DSECOP/tree/main/Learning_the_Schrodinger_Equation
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Feedback form: 
https://bit.ly/DSECOP-feedback 

GitHub

Thank you
Questions Comments Concerns?

Karan Shah 
k.shah@hzdr.de 

mailto:k.shah@hzdr.de

